arXiv:1909.03848v1 [cs.LG] 6 Sep 2019

Distributed creation of Machine learning agents for Blockchain
analysis

Zvezdin Besarabov
National School of Mathematics and Natural Sciences
Sofia, Bulgaria
zvezdin@comrade.coop

ABSTRACT

Creating efficient deep neural networks involves repetitive manual
optimization of the topology and the hyperparameters. This human
intervention significantly inhibits the process.

Recent publications propose various Neural Architecture Search
(NAS) algorithms that automate this work. We have applied a
customized NAS algorithm with network morphism and Bayesian
optimization to the problem of cryptocurrency predictions, where
it achieved results on par with our best manually designed models.
This is consistent with the findings of other teams, while several
known experiments suggest that given enough computing power,
NAS algorithms can surpass state-of-the-art neural network models
designed by humans.

In this paper, we propose a blockchain network protocol that
incentivises independent computing nodes to run NAS algorithms
and compete in finding better neural network models for a particu-
lar task. If implemented, such network can be an autonomous and
self-improving source of machine learning models, significantly
boosting and democratizing the access to Al capabilities for many
industries.

KEYWORDS

Neural architecture search, Blockchain, Data mining, Deep learning

1 INTRODUCTION

The availability of computing power has allowed deep learning
to thrive to the point where neural networks are able to reach ev-
ery industry. The advancements in self-driving cars, translation,
decease diagnosis, and computer vision are only a few examples.
However, it is difficult to guess which neural configuration will
perform better on a specific task. Creating efficient neural networks
often involves an endless process of attempting various hyperpa-
rameter and network architecture configurations. Most problems
that require such complex tuning of neural configurations also
demand for long training times. These factors make the process
of neural optimization require both deep expert knowledge and
vast amounts of computing power, limiting the amount of machine
learning problems that can be solved.

Recent advancements in the area explore the concept of Neural
Architecture Search (NAS). These algorithms attempt to automate
the process of deciding which modifications of the current neu-
ral configuration will lead to an increment in performance. This
eliminates the human bottleneck in the process of creating neural
networks.

We would like to create an improved NAS algorithm. Its per-
formance will be measured based on its ability to create efficient

Todor Kolev
Comrade Cooperative
Sofia, Bulgaria
todor@comrade.coop

neural configurations for the problem of cryptocurrency predic-
tions. This problem is chosen based on its difficulty and practical
applications. It has been thoroughly explored in our previous re-
search [3], which presents manually configured neural network
models for the problem.

In Section 2, we introduce background information on Blockchain
theory and Deep Learning. Section 3 defines the cryptoasset pre-
dictions problem and our test datasets. In Section 6, we compare
our best manual results to a recently published NAS algorithm.
Based on the experimental conclusions, in Section 7, we propose
the creation of a new NAS algorithm, distributed in a blockchain.

1.1 Related work

A set of recent publications on the topic of Neural Architecture
Search have demonstrated different approaches which successfully
beat state-of-the-art man-made models. Some of them include a
Reinforcement Learning algorithm by Google [2], a Differentiable
Architecture Search approach by Deepmind [7], and a modified
Bayesian optimization and Network morphism-based algorithm
[9]. Out of these, we consider the latter as most interesting, as they
also implemented their approach into an open source library called
AutoKeras.

Multiple blockchain startups have also demonstrated interest
in contributing to the machine learning field. OpenMined [14]
allows researchers to train their models on a private, distributed
dataset, for example medical records, and SingularityNet [16] allows
modellers to sell their machine learning solutions as services. While
these networks improve the machine learning work flow, they still
require human intervention for the creation of the models in the
first place.

When it comes to the specific predictive problem, notable work
includes a paper by a Stanford University research group [12] and
two more recent Github projects [5] [15]. All of which focus pri-
marily on Bitcoin price estimations, do not explore the rich publicly
available blockchain data in depth, and do not use or have not dis-
closed sophisticated deep learning techniques for their estimations.

2 BACKGROUND
2.1 Blockchain and Ethereum

Satoshi Nakamoto’s introduction of Bitcoin in November 2008 [13]
has often been hailed as a radical development in money and cur-
rency as it is the first example of a digital asset which simultane-
ously has no backing or “intrinsic value” and no centralized issuer
or controller. Another arguably more important part of the Bitcoin
experiment is the underlying blockchain technology as a tool of

distributed consensus. The most important aspect of such tech-
nology is the absence of an intermediary (centralized server, bank,
company, etc.) between the originator and the recipient, as any
changes to the data on this chain are made by consensus among
all members of a decentralized network. Thus, avoiding the need
to trust third parties. The blockchain can be thought of as a dis-
tributed public database with records for each transaction in history.
All cryptoasset operations and activity are contained within the
blockchain transaction data.

The Ethereum project (ETH) is a newer implementation [19],
based on the blockchain technology. In addition to the transac-
tion record keeping functionality, Ethereum provides a mechanism
for executing program logic on each transaction through the con-
cept of smart contacts. This significantly extends the use cases
of blockchain technologies, reaching far beyond simple financial
transactions - secure voting, autonomous organizations, company
management, freedom of speech networks, online games, crowd-
funding, speculation markets.

2.2 Use of Deep Learning in asset value
predictions

Deep Learning [10] allows for the discovery of patterns in a large
dataset. Such a set consists of dataset samples (input-output pairs,
such as summarized blockchain activity and the future price). The
inputs pass through multiple layers (which perform data transfor-
mations with free parameters) and leave as an output. Deciding
on an optimal arrangement, combination, and configuration of lay-
ers is the prime difficulty in creating deep networks. In order to
evaluate a network, the free parameters of its layers have to be set
(trained, learned) on known dataset input-output pairs.

Long Short-Term Memory (LSTM) [8] and Convolutional (CNN)
[11] networks are known types of DL networks, which are well
known for their performance in time series and image analysis
respectively.

3 BLOCKCHAIN PREDICTIONS PROBLEM

The applications of Ethereum [19] make it one of the more noisy and
difficult to predict blockchains. This is why we chose the problem
of predicting Ethereum as the prime target for the evaluation of
our neural networks.

The unprocessed blockchain data of Ethereum contains account
balances and transactions. One of the more interesting ways to
analyze that is to create two-dimensional account distributions,
as seen in Figure 1. These represent two crossed distributions -
one of the cryptocurrency accounts by balance (horizontally), and
one with the time since their last activity (vertically). Analysing a
series of these distributions for different time periods, we can more
effectively capture major market movements, as seen in a time-lapse
video of these distributions (https://youtu.be/Dwwnxn1j6AQ).

These observations motivated us to utilize a series of such dis-
tributions as the dataset inputs for our experiments. The expected
output is a Boolean - whether the cryptoasset price will rise or
fall within the next hour. Hence the performance metric of the
algorithm is the percent of cases where it predics correctly. The
baseline of a dataset is the maximum accuracy that can be achieved

Figure 1: We observe the difference in activity of the most
recently active accounts (left) and richest accounts (down).

by predicting a constant value. This type of dataset is the basis of
all experimental results.

The raw blockchain data we collect, the exact definition of the
feature extraction algorithms, as well as the dataset shaping method-
ologies are defined in Appendices A, B, and C respectively.

4 MANUAL DEEP NETWORK APPROACH

Our highest results on this problem using manually configured
Neural configurations are achieved in our previous research [3].
The successful configuration is a convolutional architecture, shown
on Figure 2. Using a year-long dataset, the achieved results are a
prediction sign accuracy of 55.12% (50% baseline) when trained on
a year-long dataset.

Max
Pool

0.25
Dropout Conv

0.5 i
ReLU ‘ Dropout Linear

Figure 2: The manually configured convolutional configura-
tion

Max 32

32
Pool

Conv

=

=]

=

]

32 64
Conv Conv

CNN

0.25
Dropout

512
Dense

1
Dense

Flatten

5 NEURAL ARCHITECTURE SEARCH
APPROACH

A possible method to find a more accurate neural configuration for
this problem is Neural Architecture Search. The basic work flow of
a NAS algorithm (Figure 3) is to continuously evaluate and modify
a neural configuration to learn which type of modifications are best
for the specific problem.

The bigger challenge in the design of NAS algorithms is usually
to define a modifier function that proposes architecture changes
that effectively increase performance in later stages.

5.1 NAS using network morphism and
bayesian optimization

In June 2018 Jin, Song, and Hu introduced a paper on the topic

of Efficient Neural Architecture Search with Network Morphism

https://youtu.be/Dwwnxn1j6AQ

Configuration

Input layer
Architecture changes
LSTM
Dense layer
Modifier
function
Performance
score
Converter Evaluator

Deep Network

Figure 3: High-level NAS operations

[9]. They define an evolutionary NAS technique that is based on a
modified Bayesian black-box function optimization. The modifier
function in their case is an acquisition function that learns which
configuration areas in the search space are likely to increase per-
formance. After every modification, only the changed layers are
retrained, reducing training overhead.

We experimented with their technical implementation (AutoK-
eras library v0.2.3) and modified it to apply it for the prediction
problem.

6 EXPERIMENTS AND RESULTS

We have conducted multiple experiments with the aforementioned
NAS algorithm in different data setups. The most successful exper-
iment so far includes the dataset, defined in Appendix D. Results
are shown in Table 1.

Manual | NAS
Accuracy 55% 78%
Baseline 50% 70%
Difference 5% 8%
Improvement 10% 11.4%

Table 1: Results

It must be noted that the datasets used in the two experiments
are of different length to reflect on the intended use case for both
types of networks. Manual networks are expected to generalize for
prolonged periods of time, which is why they were trained on a
year-long dataset. NAS allows for the flexibility to find an efficient
short-term solution from only the most recent data, which is why
we focused on 7-day datasets. With that in mind, we can observe
that the NAS results are on par with our best manually designed
network.

These results are consistent with the findings of several other
researched NAS approaches, such as Google’s reinforcement learn-
ing [2], Deepmind’s on Differentiable Architecture Search [7], and
Jin, Song, and Hu’s Bayesian optimization with network morphism
[9]. All of these reach results similar or sometimes surpassing the
best neural network models designed by humans.

The unanimous conclusion of all aforementioned researchers is
that their results were achieved by utilizing large amounts of com-
putational power. Further improvement of performance requires
significantly more computational resources, which means that in-
dividual entities can hardly make progress and take full advantage
of the potential NAS algorithms provide.

7 DISTRIBUTED NAS IN A BLOCKCHAIN

One possible way to counter this problem is to create an open
environment where financially incentivised computing nodes can
execute NAS algorithms and compete with each other in finding
optimal neural solutions to a specific problem.

This is the idea that lead us to the creation of a general framework
and blockchain protocol for distributed creation of autonomous
machine learning agents named “ScyNet”.

The following subsections provide a high-level overview of the
protocol in question. The formal definition of the transaction pro-
tocol and node responsibilities is found in Appendix F. Explanation
of the possible attacks a malicious actor can attempt, as well as how
the system will handle these scenarios, is found in Appendix G.

7.1 Main entities and roles

A specific implementation of ScyNet for a chosen problem (for
example, stock market predictions) represents a single blockchain
network and is called a Domain. Every domain defines an unique
utility token that is used to form consensus and incentivise partici-
pants. A node, member of a domain network, is called a Hatchery.
Three types of hatcheries exist - harvesters, miners, and external
clients. Harvester hatcheries interface the real world by selling data
related to the domain problem. Miner hatcheries use that data to
execute a NAS that creates machine learning agents as potential
solutions to the problem. The network consensus verifies the per-
formance of the agents and financially awards the best ones. Then,
clients can explore the verified agents and utilize them for a specific
subscription fee determined by the hatchery that produced them.

For example, if we were to apply this protocol for the blockchain
problem, we would create a domain for cryptoasset predictions.
Harvesters can provide arbitrary blockchain or market analysis
data and miners can purchase this data to train predictive agents.
Client hatcheries can rent and use these predictive algorithms to
trade their own portfolio.

7.2 Tournament validation

Tournaments are regularly scheduled “competitions” for the verifi-
cation of new agents. They have a start date and a specific duration,
after which the next tournament starts. Miner hatcheries have
the right to submit one or more of their agents for verification by
paying a submission fee before the start of the next tournament.
How a tournament can cryptographically prove an agent’s per-
formance depends on the type of machine learning problem being

solved in the domain. The first type represents real-time predic-
tions, such as stock market trading or weather forecasts. These
predictions are made at the same time in a consistent schedule,
known as real-time ticks. In this scenario, the competing miners
are requested to provide real-time predictions from their agents
for every tick during the tournament. Afterwards, every node in
the network compares these predictions to the actual values to
form consensus on a ranking of the participating agents and their
respective performance.

The other type of problems are dataset input-output problems,
such as self-driving algorithms or speech recognition. In this case,
the network consensus randomly selects multiple nodes that are
labeled as challengers. Every such node is responsible to provide
a dataset with which to challenge the competing agents to resolve it.
Depending on the problem, this can be either algorithmically gen-
erated, or retrieved from a reliable source. The miners evaluate the
dataset and publish the outputs of their agents. After tournament
closure, the network compares the agent outputs to the expected
ones and forms consensus on an agent ranking.

The submission fees collected before a tournament comprise
the tournament award, which is used to award the top performing
agents and the selected challengers, if applicable.

At no single point do the miners reveal the mechanisms behind
their agents, allowing for a significant flexibility in how these agents
are created.

7.3 Agent utilization

Miners with verified agents have the right to set a price and allow
others to “rent” their agents. For real-time problems, this means
paying a subscription to receive a specific agent’s real-time pre-
dictions. In dataset problems, the clients privately send a specific
input data that they want the agent to resolve and then receive its
output, paying a fee for every input they submit. A miner that does
not want to sustain an agent can also directly sell the model behind
it. The fees are received directly by the respective seller miners as
an additional reward for having created useful agents.

Other than being sold to external clients, agent outputs (signals)
can also be bought by miners that include them in the input of their
own agents. This act of chaining agents also means that there can
be “aggregator” agents that receive signals from many other agents
and produce a more informed signal on their own.

8 SCYNET IMPLEMENTATION

Our plans are to use the presented blockchain protocol to implement
a public blockchain network, which we will also call “ScyNet”.

Even with a small number of initially participating nodes, ScyNet
can be a meaningful source of Machine Learning models that is
entirely automated and autonomous. The only resource that this
network requires to produce continuously improving models is
computing power.

Through the utility token economy and decentralized tourna-
ments, the participating nodes in ScyNet earn, stake, and trade
with native blockchain tokens, used also for the network’s Proof-
of-Stake consensus. As the economic utility of training Machine
Learning agents is higher than that of mining hashes, it is rea-
sonable to suggest that the market capitalization of the suggested

network’s utility token can be at least similar to the ones of the
currently widespread Proof-of-Work networks.

If ScyNet is made operational, it can democratize the access
to AI for many industries. Still, we see the most exciting early
applications of the network in the algorithmic trading of crypto-
assets. Thus, the network will have its economic incentives entirely
within the blockchain domain.

9 CONCLUSION

Our initial focus on the problem of blockchain analysis led to the
manual creation of an effective neural network. We were surprised
to see how applying the latest state of NAS research for this prob-
lem managed to create a neural network, reaching the same perfor-
mance level, all without human intervention.

This experiment also demonstrated that the main constraint to
what a NAS algorithm can achieve is the amount of computing
power utilized. That motivated us to design a Blockchain protocol
that incentivises independent computing nodes to execute NAS
algorithms and compete in creating continuously improving solu-
tions for a particular task. The nodes of the network can collaborate
through an open market mechanism which allows for the stacking
of different models that can provide even more informed predic-
tions.

Our future work will be towards providing a reference imple-
mentation of the presented blockchain protocol and establishing
an operational network of computing nodes.

REFERENCES

[1] Bager, K., Huang, D. Y., McCoy, D. and Weaver, N. [2015], ‘Stressing out: Bitcoin
“stress testing”, http://damonmccoy.com/papers/bitcoin16-final22.pdf.
[2] Barret Zoph, Q. V. L. [2017], Neural architecture search with reinforcement
learning.
[3] Besarabov, Z. and Kolev, T. [2018], ‘Predicting digital asset market based on
blockchain activity data’, ArXiv e-prints .
[4] Buterin, V. [2015], ‘Understanding casper : Proof of stake consensus algorithms’,
https://blog.ethereum.org/2015/12/28/understanding- serenity-part-2-casper/.
[5] Bynum, C. [2015], ‘Bitpredict’, https://github.com/cbyn/bitpredict.
[6] Etherscan [2018], ‘Ethereum chaindata size growth (fast sync)’, https://etherscan.
io/chart2/chaindatasizefast.
[7] Hanxiao Liu, Karen Simonyan, Y. Y. [2018], ‘Darts: Differentiable architecture
search’.
[8] Hochreiter, S. and Schmidhuber, J. [1997], ‘Long short-term memory’, Neural
Comput. 9(8), 1735-1780.
URL: http://dx.doi.org/10.1162/neco.1997.9.8.1735
[9] Jin, H., Song, Q. and Hu, X. [2018], ‘Efficient neural architecture search with
network morphism’.
[10] LeCun, Y. Bengio, Y. and Hinton, G. [2015], ‘Deep learning’, Nature 521, 436.
URL: http://dx.doi.org/10.1038/nature14539
[11] Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. [1998], ‘Gradient-based learning
applied to document recognition’, Proceedings of the IEEE 86(11), 2278-2324.
Madan, I. [2014], Automated bitcoin trading via machine learning algorithms.
Nakamoto, S. [2009], ‘Bitcoin: A peer-to-peer electronic cash system’, https:
//bitcoin.org/bitcoin.pdf.
[14] OpenMined [2019], ‘An open-source community focused on researching, devel-
oping, and elevating tools for secure, privacy-preserving, value-aligned artificial
intelligence’, https://www.openmined.org/.
Remy, P. [2017], ‘Deep learning bitcoin’, https://github.com/philipperemy/
deep-learning-bitcoin.
SingularityNET [2017], ‘A decentralized, open market and inter-network for ais’,
https://public.singularitynet.io/whitepaper.pdf.
[17] Sunny King, S. N. [2012], ‘Ppcoin: Peer-to-peer crypto-currency with proof-of-
stake’, https://peercoin.net/whitepapers/peercoin-paper.pdf.
Tendermint [2019], ‘Byzantine-fault tolerant state machine replication’, https:
//tendermint.com/.
Wood, G. [2018], ‘Ethereum: a secure decentralized generalised transaction
ledger’, https://ethereum.github.io/yellowpaper/paper.pdf.

==
EXS)

(15

[16

(18

[19

http://damonmccoy.com/papers/bitcoin16-final22.pdf
https://blog.ethereum.org/2015/12/28/understanding-serenity-part-2-casper/
https://github.com/cbyn/bitpredict
https://etherscan.io/chart2/chaindatasizefast
https://etherscan.io/chart2/chaindatasizefast
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.openmined.org/
https://github.com/philipperemy/deep-learning-bitcoin
https://github.com/philipperemy/deep-learning-bitcoin
https://public.singularitynet.io/whitepaper.pdf
https://peercoin.net/whitepapers/peercoin-paper.pdf
https://tendermint.com/
https://tendermint.com/
https://ethereum.github.io/yellowpaper/paper.pdf

A RAW BLOCKCHAIN DATA

The first kind of data gathered is historical market tick data, which
is aggregated from multiple exchanges to achieve a less biased view
of the financial state. The frequency (size of each market tick) is one
hour. Every tick consists of the open, close, low, and high prices, as
well as the trade volume to and from the currency for that period.

The second kind of data is from the Ethereum blockchain. It
grows every day [6] and includes hundreds of gigabytes worth of
transactions, cryptocontract executions, and blockchain events for
every moment its existence. For each block in the chain, the follow-
ing data points are extracted: creation timestamp, number (chain
index), miner (block creator), list of confirmed transactions, size in
bytes, creation difficulty, and computational resources used (Gas
limit and Gas used). The following is stored for each transaction
in a block: address of the initiator and receiver, transferred value,
used resource units (Gas), and amount paid per resource unit (Gas
price). The same kind of information is also collected for internal
contract activity by calculating transaction traces.

The total size of the gathered raw blockchain features is around
500GB, containing 5,300,000 blocks with a total of 194, 000, 000
transactions and close to a billion traces. It took 30 consecutive
days to download and another 14 to process, filter, format, and save
the data to a database.

Both the market and blockchain data are collected for the interval
from 8-08-2015 to present.

B GENERATION OF DATA PROPERTIES

In order to create a blockchain-based dataset, we first need to extract
more valuable information from the raw blockchain data by defining
feature extraction algorithms. A feature (also called property) is
calculated once for each market tick in the historical data in order
to form a time series.

More specifically, we are investigating methods to track the activ-
ity of cryptocurrency accounts in higher detail. This is achieved by
creating account distributions - 2D matrices that visualize account
activity based on multiple account features. These distributions
contain spatial value, which Convolutional networks can take ad-
vantage of.

Let us introduce some common definitions: sc/ as an array of
scale functions, feat as an array of functions that return an account
feature, and mx as an array of constants.

Possible values for scl; include log, and log; ,. Possible account
features (feat;) are defined in Table 2.

B.1 Account balance distribution

This distribution visualizes summarized recent account activity
in terms of the exchanged volume and amount of transactions,
distributed based on balance groups.

Let us define scly = log,; mxg = 1026, featy = volumeln; feat; =
volumeOut; featy = transactionN; groupN = | sclo(mxp)]; featN =
3, S as the accounts that have participated in a transaction through-
out the current market tick, and distribution as a matrix of shape
(featN, groupN).

Feature Description

balance Account balance, measured in wei (1018 wei =
1 ETH).

lastSeen Amount of seconds since the account’s last par-
ticipation in a transaction.

volumeln Amount of received value in the last tick, in
wei.

volumeOut Amount of sent value in the last tick, in wei.

transactionN Amount of transactions where the account is
either a receiver or a sender.

ERC20 Amount of ERC20 token operations in the last

tick (Ethereum contracts only)
Table 2: The possible account feature functions.

For acc € S:

gr = min(|sclp(balance(acc))], groupN — 1)

For x € [0, featN):

distributiony, gr + = featy(acc)
distribution = scly(distribution)
The final operation is to scale the large values of volumeln and
volumeOut.

Figure 4 contains an example of 2 such distributions.

o 10 20 30 40 50 60 70 80

!

10.0 125 15.0 20.0

!

12.5 15.0 17.5 20.0

Figure 4: Examples with scly = log; , (up) and scly = log,
(down). We observe how the summarized account trade ac-
tivity changes in the different balance groups.

B.2 Account number distributions

These multivariate distributions represent how the accounts are
clustered based on 2 of their account features.

The process of creating an account number distribution is de-
scribed as follows:

Repeat for x = 1 and x = 2:
groupNy = |scly(mxy)]
For acc € S, where S is a chosen subset of (or all) accounts, do:
Repeat for x = 1 and x = 2:
groupy = min(|scly(featy(acc))], groupNy — 1)
distribution[groupy, groupz] + =1
Finally, for every value, do:

distribution = log,(distribution)
The final log, scaling is to mitigate the uneven distribution of
accounts. Some configurations of this type of distributions are
presented in Table 3.

N S feat; featy scly scly mxq mxs

1 all balance lastSeen 10g1.2(|_x/1017j) log; , 107 207363
2 contracts balance lastSeen 10g1.2(|_x/1017j) log; , 107 207363
3 contracts volumeln ERC20 log,(|x/10'7]) log, 107 262144
Table 3: The configurations for account number distribu-
tions. The balances and transfers, measured in wei, are
scaled to larger units (1017 wei = 0.1 eth) to reduce noise.

Consequently, we refer to the distribution configurations as
follows: balanceLastSeenDistribution (N=1), contractBalanceLast-
SeenDistribution (N=2), and contractVolumeInERC20Distribution
(N=3). Example distributions are visualized in Figure 5.

C GENERATION OF A DATASET

A dataset is a set of samples, containing inputs (normalized prop-
erty data) and expected outputs (prediction target). The concepts
and methodologies behind dataset generation are defined in the
following subsections.

C.1 Prediction target

The prediction target is the future value a chosen target property.
Predictions are for the duration of one market tick. Examples of a
prediction target include relative price fluctuations, amount of new
accounts, trade volume, transaction count, and network stagnation
(which has been a considerable issue in the past [1]).

Our experiments are be mainly focused on predicting price move-
ments.

C.2 Normalization
Let us define the following normalization algorithms:
basic; = _ Xi—min(x)
(max(x) — min(x))

This basic min-max scale is used to map independent sequences
with the same sign to the interval € [0;1].

xi + max(|max(x)|, |min(x)|)

around_zero; =
- ! 2 % max(|max(x)|, |min(x)|)

Similar to basic, but maps positive and negative inputs to (0.5; 1]
and [0; 0.5) respectively. This scale is used with sequences of vary-
ing sign.

1y 1

image; = (xj — —) Xt)* ———

gei = (xi n; 0 59
An an algorithm which produces unbounded time series of zero

mean and equal variance. It is used with image-line sequences.

Every property in a dataset is a different time series and is normal-
ized separately with a chosen algorithm. A method to automatically
determine the algorithm for a given property is called prop, which

12
10

20 10

30

40
50
60
70

80

20 40 60 80
b 2.00
25 175
5.0 1.50
7.5 1.25

10.0 i

12.5

0.75

15.0

0.50
17.5
0.25
20.0
0.00
0 5 10 15

Figure 5: balanceLastSeenDistribution (up): we observe
the difference in activity of the most active accounts
(left) and richest accounts (down). The empty lines are
seen because |log; ,(x)] ¢ {1,2,4,5} for all x. User
behavior and major market movements are more effec-
tively seen in a time-lapse video of the distribution values
(https://youtu.be/Dwwnxn1j6AQ).
contractVolumeInERC20Distribution (down): we observe
the correlation of a crypto contract being used (X) and the
amount of funds received from it (Y).

uses basic scale if the property values are absolute and around_zero
scale otherwise.

Most of the algorithms scale on the basis of min and max bounds,
hence future values may not fit that initial scale. The problem is
mitigated if the normalized values are relative, which has also
resulted in lower overfit and higher prediction accuracy in our
experiments.

C.3 Dataset models

The dataset samples (input-output pairs) are created using a sliding
window with a size of wn and step increments of 1 over a chosen
set of normalized property values. Let us define a property’s values
as propy, where y < propN, a specific value in a property time
series as propy, x, and prop; as the prediction target.

step =0

https://youtu.be/Dwwnxn1j6AQ

Figure 6: Visualized sample of the stacked layers model,
where wn = 3 and the chosen properties consist of balance-
LastSeenDistribution.

For x € [0, wn — 1], do:
For y € [0, propN — 1], do:
Willx, y = Propy, x+step

tar = propt, wn+step

Where win is the window (unstructured dataset input), tar is
the expected output, and step is incremented for each window.

In order to combine multiple normalized properties in a single
dataset, we need the following model that defines how their values
are arranged in N-dimensional space.

C.3.1 Stacked layers model. A given set of property values (a
column in win) has shape (v1, v2, wn), where v = 1 and vy = 1 for
all properties but the distributions (discussed in Sections B.1 and
B.2). The stacked layers model is a 3D structure that matches input
shape for the Convolutional Neural Network and allows modeling
of 3D shaped property windows, preserving their spatial value.

The model defines a 3D matrix mat of shape (valuesi, valuesy, wn).
A dataset sample mat is created as follows. For every set of win-
dowed property values vals:

matg, +(0 to v1),s3+(0 to v2),0 to wn = valso to vy,0 to vs,0 to wn

Where s; and sy are set to the smallest integers where no values
of other previously assigned properties are overridden. A visualized
sample produced this model is seen in Figure 6.

D GENERATED DATASETS

Our NAS experiment includes one variant of a dataset configuration.
It comprises of the property balanceLastSeenDistribution using the
stacked model with 24 window_size and image normalization. The
dataset spans 10 days after 2017-09-07, where the train dataset is
the first 7 days and the network performance is evaluated on the
last 3. The expected neural network output is a classification on
whether highPrice increases or falls in the next tick.

In our prevoius experiments [3], datasets covering huge time
intervals have consistently demonstrated lower performance on re-
cent data. Cryptoassets are very volatile and we are only interested
in analyzing the latest market trends, contained in the activity of
the last couple of days. This short-term approach would only be
practical with automatically generated neural networks, as a new
configuration needs to be created for every new market trend.

E BLOCKCHAIN ANALYSIS FRAMEWORK

The technical implementation for the blockchain problem, including
data processing, dataset generation, and manual neural network
definitions, is developed into an open MIT-licensed Blockchain
analysis framework. The framework allows for the prediction of
a chosen cryptocurrency on the basis of user-defined property
extraction and neural algorithms. The GitHub repository of the
project can be found at: https://github.com/Zvezdin/blockchain-
predictor

F FORMAL SCYNET PROTOCOL DEFINITION

All of the roles and functions of the proposed blockchain network
can be more formally represented through the ScyNet blockchain
protocol. It represents a set of transactions and a consensus mecha-
nism that build an independent blockchain for the creation, verifi-
cation, and utilization of machine learning agents.

F.1 Underlying blockchain

On alower level, a ScyNet domain builds an independent blockchain
network and a blockchain structure. The network behaves similarly
to Bitcoin [13], where any external node can connect with other
peers, synchronize the blockchain, interact with the network by
signing transactions, as well as participate in the consensus by
verifying transactions and blocks.

F.1.1 Domain token. Every domain network creates a non-mintable

token of a fixed supply. This token is used in all network payments
to incentivise the consensus and commitments of the three types
of hatcheries - harvesters, miners, and clients.

F.1.2 Consensus. Bitcoin’s consensus relies on the GPU-heavy
Proof-of-Work mechanism, known as “mining”. ScyNet domains
use a more efficient consensus mechanism in order to utilize GPU
power for useful work. The consensus is a variant of Proof-of-
Stake [4] called “Coin Age based selection”, as introduced in the
PeerCoin cryptocurrency [17]. The consensus power (probability
for a specific node to win a block) is proportional to the number
of cryptocurrency tokens the node has “staked”, multiplied by the
amount of days since it staked them. The timer is reset every time
a node changes its stake or wins a block. This mechanism makes
block creation more evenly distributed among the competing nodes,
because the timing mechanism allows nodes with smaller amounts
of stake to have a significant chance at winning a block overtime.

F.1.3 State replication. A ScyNet domain network is built with
the Tendermint framework [18]. It allows for the secure and consis-
tent replication of a state machine (application) over many comput-
ing nodes. This means that once we define the types of transactions
and the respective logic for their handling, Tendermint can consis-
tently propagate these transactions through our peer network so
that every node is on the same application state after every trans-
action. The framework is also Byzantine fault tolerant as it can
tolerate the arbitrary failure of up to % of the participating peers.

A network based on Tendermint works as follows. First, nodes
submit transactions that reach every other node in the P2P net-
work and enter the nodes’ mempool. Upon a configurable event, a
distributed pseudo-random function is executed that selects one

https://github.com/Zvezdin/blockchain-predictor
https://github.com/Zvezdin/blockchain-predictor
https://github.com/Zvezdin/blockchain-predictor

node on the base of its consensus power. This node selects trans-
actions from the mempool, creates a block, and submits it to the
network. The block has to be signed by nodes with at least % of
the network’s total consensus power in order for it to be accepted
on the blockchain. If this step fails within a timeout, a new block
creator is selected.

F.2 Domain configuration

The definition of a domain network includes setting a few specific
parameters. This defines the tournament schedule and validation
parameters, which depend on the specific machine learning problem
being solved:

e tournamentStartFrequency (Integer, milliseconds) - A tour-
nament will start every x milliseconds, measured from
UNIX Epoch. The tournament ends right before the start
of the next one;

e proposerDeadline (Integer, milliseconds) - Period after the
tournament where a selected proposer node must submit
a tournament ranking;

o timeTolerance (Integer, milliseconds) - Latency tolerance
for timed transactions;

e problemType (“real-time” or “dataset”) - Type of machine
learning problem;

o realTimeFrequency (Integer, milliseconds) - For real-time
problems, a real-time tick is defined as every x milliseconds,
measured from UNIX Epoch;

o datasetSubmissionDeadline (Integer, milliseconds) -Deadline
for challengers to submit dataset inputs after tournament
start;

o minAgentChallengers (Integer) - Minimum number of nodes
that have to independently challenge a submitted agent;

¢ minAgentChallengerVotingPower (Percentage) - Minimum
share of the network voting power that has to challenge a
submitted agent;

e agentSubmissionFee (Domain tokens) - Fee for a miner to
submit an agent for a tournament;

e dataPublishFee (Domain tokens) - Fee for a harvester to
publish a data offering;

o pricePublishFee (Domain tokens) - Fee for a miner to ad-
vertise his agent on the chain;

e rentFee (Domain tokens) - Fee withdrawn when a client
rents an agent.

Outside the blockchain consensus, every domain needs a techni-
cal implementation of the blockchain node that defines all off-chain
specifics, such as data formats, which error function is used in
agent evaluation, or what external data do the nodes need to evalu-
ate agents. Other responsibilities of the node implementation are
discussed in Section H.

F.3 Node responsibilities

The high-level overview (Section 7) presented the main roles and
responsibilities and this section defines the specific protocol that
every network node must follow to achieve that. References will
be made to both the domain configuration (Section F.2) and the
different network transactions (Section F.4).

F.3.1 Harvester actions. In order for a hatchery to provide a
data stream (real-time or of specific quantity) and advertise it on
the blockchain, it must:

(1) Submit publish_data_price transaction (Section F.4.9), pay-
ing the dataPublishFee;

(2) Listen for rent transactions F.4.10 that are directed to the
harvester;

(3) Communicate with the sender off-chain and privately give
access to the requested quantity or duration of data.

F.3.2 Miner actions. In order to verify and sell an agent on the
network, a miner should:

(1) Send submit_agent transaction (F.4.1), paying the
agentPublishFee;
(2) If domain is real-time:

(a) Wait for the first real-time tick after tournament start;

(b) Generate an AES-256 key, generate an agent signal,
encrypt the signal, and send submit_signal transaction
(F.4.3);

(c) At the next real-time tick, reveal the decryption key
with publish_signal_decryption_key transaction (F.4.5);

(d) Repeat from b for every real-time tick until tourna-
ment end.

(3) If domain is dataset:

(a) Wait for consensus to select the tournament chal-
lengers and then listen for publish_dataset transac-
tions (F.4.2) from the challengers until the
datasetSubmissionDeadline;

(b) Download the datasets, generate all agent signals, gen-
erate an AES-256 key, encrypt the signals, and send
submit_signal transaction (F.4.3);

(c) Wait for tournament end and reveal the decryption
key with publish_signal_decryption_key transaction
(F.4.5).

(4) If the miner decides, it may submit publish_agent_price
transaction F.4.8 to advertise his agent as a service;

(5) Listen for rent transactions F.4.10 that are directed to the
miner;

(6) Communicate with the sender off-chain and privately give
access to the requested agent use.

Failing to submit all required signals by the domain type will
render the miner as disqualified from the tournament.

F.3.3 Challenger actions (dataset domains). The discussed con-
sensus algorithm in Section (F.1.2) presented a method to pseudo-
randomly select one node from the network for block creation. The
same algorithm is also used to select tournament challengers with
the following additional rules:

(1) The selection process starts at tournament start;

(2) A miner, participating in the tournament, cannot be se-
lected,;

(3) There must be at least minAgentChallengers challengers
selected;

(4) The total consensus power of selected challengers must be
at least minAgentChallengerVotingPower;

(5) There cannot be a challenger that comprises more than
10% of the total challenger consensus power;

(6) Run the selection algorithm until these conditions are met.
Once selected, every challenger must:

(1) Run a domain-specific algorithm to generate a validation
dataset.;

(2) Generate an AES-256 key, encrypt the dataset outputs, and
submit the dataset through the publish_dataset transac-
tion(F.4.2) by the datasetSubmissionDeadline;

(3) Wait for tournament end and submit dataset outputs de-
cryption key via publish_dataset_decryption_key (F.4.4).

Failing to follow these rules by either not submitting a required
transaction by the deadline, or submitting an invalid one, will result
in the specific challenger being marked as disqualified, losing this
role for the present tournament.

F.3.4 Common actions for every node.

(1) If domain is real-time:

(a) Listen for submit_signal transactions (F.4.3) from the
miners;

(b) Listen for publish_signal_decryption_key transactions
(F.4.5);

(c) Wait for tournament end and decrypt all received
signals;

(d) Make a local ranking of agents based on their predic-
tion accuracy.

(2) If domain is dataset:

(a) Listen for publish_dataset transactions (F.4.2) from
the challengers;

(b) Listen for submit_signal transactions (F.4.3) from the
miners;

(c) Listen for publish_dataset_decryption_key (F.4.4) from
the other challengers;

(d) Listen for publish_signal_decryption_key transactions
(F.4.5) from the miners;

(e) Decrypt all received signals and make a local ranking
of the agents based on their average score among all
challenger datasets;

(f) If any challenger misbehaves, mark him internally as
disqualified.

(3) If any miner misbehaves, mark him as disqualified as well.

A misbehaving node is one that did not follow the protocol of its
role and either did not submit a required transaction, or submitted
an invalid one. If a node marks another as disqualified, this is only
internally known by the node itself.

The first block creator that is selected after a the proposer Deadline
must include its local tournament ranking in the block by including
the publish_tournament_ranking (F.4.6) transaction. This transac-
tion will grant the tournament reward according to the rules in
Section F.3.5. If another node receives a block after the specific
deadline, the tournament results have not already been written
to the blockchain, and a valid publish_tournament_ranking (F.4.6)
transaction is not present, the block must be rejected. When a block
is rejected, the consensus selects a new block creator who will, in
this case, also be obliged to submit the ranking.

If the block creator has internally disqualified challengers with
> 50% of the consensus power of all challengers, the tournament
is considered a failure. In this case, the tournament_failure (F.4.7)

transaction has to be submitted instead, refunding all received fees
that comprise the failed tournament reward.

F.3.5 Tournament reward. All agentSubmissionFee and
dataPublishFee, and rentFee received before the start of a tourna-
ment comprise the tournament reward. When a valid
publish_tournament_ranking (F.4.6) transaction is received, the
balance of the reward is granted by the following principles:

o If the domain is real-time, award the non-disqualified min-
ers behind the top 3 performing agents in ratio 3:2:1;

o Ifthe domain is dataset, the first % of the reward is assigned
to the non-disqualified challengers in ratio of their con-
sensus power. The rest is assigned to the non-disqualified
miners behind the top 3 performing agents in ratio 3:2:1;

e If < 3 and > 1 agents are from non-disqualified miners,
the reward is split on 3:2 or 1 ratio;

o If 0 agents have survived, the reward is transferred to the
fund of the next tournament.

F.4 Transaction types

All blockchain communication in a domain is executed through
transactions. Every hatchery holds an identity (account) on the
network and should sign any outcoming transactions with it. An
incorrectly signed transaction is invalid. Invalid transactions will
be rejected by any peers and will not be propagated through the
network or included in a block.

In the following subsections we describe in detail every type of
transaction with its arguments, effect, and validity.

F.4.1 submit_agent(UUID). Sent by a miner hatchery to notify
that it has an agent that it wants to verify in the next tournament.
Transaction arguments include an UUID by which this agent will
be identified in future communication. Sending this transaction
will automatically withdraw agentSubmissionFee amount of tokens
from the miner’s balance.

The transaction is invalid if the proposed UUID is already taken
by another agent, or if the miner does not have enough tokens to
pay the fee.

F.4.2 publish_dataset(inputsURL, inputsHash,
encryptedSignalsURL, signalsHash). Only exists in dataset domains.
It is used by tournament challengers to publish the inputs of their
personal dataset (accessible through inputsURL) so that competing
miners can prove their agents’ performance on it. The challenger
generates a random AES-256 key and encrypts and uploads the cor-
rect dataset outputs (through encryptedSignalsURL). Hashes of the
inputs and decrypted outputs are provided for future verification.

The transaction is invalid if it is not signed by a selected tour-
nament challenger, if the same challenger already submitted a
transaction of this type during the same tournament, or if the
datasetSubmissionDeadline of the current tournament has passed.

F.4.3 submit_signal(agentUUID, encryptedSignal). Sent by a
miner hatchery to submit an AES-256 encryptedSignal from a spe-
cific agent (agentUUID). Every signal must be encrypted with a
different, unique, AES key.

The transaction is valid if agentUUID exists and is claimed by
the signing miner through a previous submit_agent.

Additionally, if the problem is real-time, the transaction is valid
only if received within a timeTolerance of the specific real-time
tick. It is invalid if the same transaction type has already been sent
by the same miner and with the same agentUUID for the same tick.
If valid signal transactions for all ticks throughout a tournament
are not received, the miner is disqualified.

If the problem is dataset, the transaction is valid only if received
during an active tournament. It is invalid if the same transaction
type has already been sent for the same agentUUID. If not received,
the miner is disqualified from this tournament.

F.4.4 publish_dataset_decryption_key(key). Only exists in dataset
domains. Every tournament challenger has to send this after the
end of a tournament and reveal the encryption key that was used
to encrypt the correct dataset outputs in publish_dataset.

The transaction is invalid if not signed by a non-disqualified
tournament challenger, not received within a timeTolerance of the
tournament end, or the same transaction type has already been
sent by the same challenger after the end of the same tournament.

If a tournament challenger does not submit this valid transaction,
he is disqualified.

F.4.5 publish_signal_decryption_key(agentUUID, key). Sent by
a miner a specific amount of time after signing submit_signal to
reveal the AES-256 key by which the original signal was encrypted.

The transaction is valid if agentUUID is a previously registered
agent by the signing non-disqualified miner and key has not been
previously used in this tournament.

If the problem is real-time, the transaction is only valid if received
within a timeTolerance of a specific real-time tick and key success-
fully decrypts the signal received in submit_signal transaction for
agentUUID from the previous real-time tick.

If the problem is dataset, the transaction is only valid if received
within a timeTolerance of the tournament end and key decrypts
the previously submitted signal.

If the signal is for an agent competing in an active tournament
and a valid key is not received by the end deadline, the miner who
owns the agent is disqualified.

F.4.6 publish_tournament_ranking(ranking). Writes the results
of a successful tournament on the blockchain - a ranking of the com-
peting non-disqualified agents and their respective performance
scores. Upon receiving a valid transaction, the node must update
its state to grant the tournament award in accordance to Section
F.3.5.

Transaction is only valid if:

o The signer is the block creator;

e The transaction is received after a tournament end (and
preferably but not enforceably before the proposer Deadline);

e The tournament is successful;

o The ranking exactly matches the node’s internal ranking;

o The ranking for this tournament has not been successfully
submitted already.

F.4.7 tournament failure. Sent to notify for a failed tournament.
Upon receiving a valid transaction, the node must update its state
to refund all agentSubmissionFee or dataPublishFee that were re-
ceived for the failed tournament’s reward.

Transaction is only valid if:

e The signer is the block creator;

e The transaction is received after a tournament end (and
preferably but not enforceably before the proposer Deadline);

e This transaction has not already been submitted for the
same tournament.

F.4.8 publish_agent_price(agentUUID, scheme, price). A miner
can allow his agent to be rented, or subscribed to, by other hatcheries.
There are two types of payment schemes - paying the price for ev-
ery time you use an agent, subscribing to the agent and being able
to use it for a specific period, or directly buying the algorithm. This
transaction withdraws pricePublishFee from the miner’s account.

The transaction is valid if the signer has previously successfully
had agentUUID validated in a tournament, or if the signer does
not have balance for the fee.

F.4.9 publish_data_price(dataUUID, dataParams, scheme, price).
A harvester can freely publicize what data it intends to sell to min-
ers for the training of their agents. Details, including the shape,
frequency, and further description of the data features are included
in dataParams, which is a domain-specific data structure. The
scheme and price parameters have the same functionality as in
publish_agent_price. Submitting this transaction will withdraw
dataPublishFee domain tokens from the harvester’s account.

The transaction is valid if the signer has enough balance to pay
the fee and dataUUID has not been previously assigned to an agent
or data provider.

F.4.10 rentUUID, quantity). Any hatchery can rent a pub-
lished agent or data from a harvester. Signing this transaction
will withdraw quantity = price domain tokens from the sender,
where price is the specific cost of the agent or data to which UUID
refers. The tokens are sent to the balance of the hatchery that
created the agent or data. An additional rentFee is withdrawn to
restrict potential transaction spam, which is sent to the next tour-
nament reward. Afterwards, the buying hatchery has to establish
off-chain contact with the receiving hatchery and agree upon a
delivery method, which is domain-specific.

The transaction is valid if quantity > 1, the signer has enough
balance to pay for the fees, UUID exists, and a price for it has
already been published through publish_agent_price or
publish_data_price.

If UUID refers to an agent whose payment scheme is to sell the
algorithm directly, the transaction is invalid if quantity # 1.

G ATTACK RESILIENCE

In this section, we describe how the specifics of the ScyNet trans-
action protocol build resilience against the arbitrary failure of any
network node and role.

G.1 Underlying blockchain security

The Tendermint framework allows for the synchronous processing
of transactions that propagate through the network in a determin-
istic manner. There is no disparity in the system, meaning that
replay attacks are not possible. Because of the voting mechanism
for consensus, if one party obtains > % of the network’s consensus

power, it can stop block verification. The system can be arbitrarily
modified with > % of the consensus power.

Additionally, the transaction signing makes impersonation is
not possible without access to a node’s private key.

G.2 Transaction spam

As discussed in the description of the transactions, every transac-
tion type that does not require a fee has constraints on its usage
for a time period. Sending a transaction outside of these limits will
invalidate it and it will not be propagated through the network.
Transactions with fees have monetary incentives against this behav-
ior. This ensures protection against Denial-of-Service transaction
attacks.

G.3 Agent signal copying

A miner may be tempted to copy a rival’s agent signals during
a tournament and submit them as his own. However, all agent
signals are submitted encrypted. The decryption key is revealed
after the deadline for submission of a specific signal, protecting
against copying.

A miner may instead copy all submitted ciphertexts of a rival
and then copy the decryption key. However, when submitting a
signal, the miner is required to encrypt both the signal and his
public key, signing the package with his private key. This means
that while cyphertext copying is possible, after the decryption key
is revealed, so will be the true author.

G.4 Service failure

If a client has paid a miner or a harvester to utilize its agent or data,
the providing node can theoretically deny access to the service, as
it is not part of the blockchain consensus. However, as nodes on
the network are usually anonymous, the provider has no financial
incentive to behave that way.

G.5 Agent submission failure

A miner may submit an agent for participation in a tournament
and then fail to send a required timed agent signal or decryption
key. In this case, the miner will be disqualified. If all miners in
a tournament are disqualified, the tournament is still considered
successful.

G.6 Challenger failure

In dataset domains, failing to send a dataset or an output decryption
key by the deadlines will disqualify that challenger. This includes
sending too large, wrongfully formatted, wrongfully encrypted,
wrongfully hashed, or otherwise corrupt dataset.

Submitting a valid dataset with incorrect outputs is possible,
as there is no way to differentiate between an inaccurate agent
and bad testing data. The challenger can also secretly provide the
unencrypted correct outputs to a competing miner, giving him
an unfair advantage. Because the performance of an agent is his
average performance over all challenger datasets, the intent is
to minimize the impact of a malicious challenger by requiring a
specific quantity of challengers as per Section F.3.3. Nevertheless,
a theoretical large amount of malicious challengers can adversely
impact the ranking reliability.

H OFF-CHAIN NODE FUNCTIONALITY

Other than obeying the transaction protocol and defining the do-
main parameters, all nodes in a domain network must agree on
the specifics of the problem in question. This includes defining
the data format of the signals, harvester streams, and datasets, the
method of evaluation of agent performance and any required ex-
ternal data, and the method of dataset generation for challengers
(where applicable). Additionally, the miner software is responsible
for executing and maintaining a NAS algorithm, as well as auto-
matically selecting which neural networks produced by the NAS to
submit for network verification as agents.

In a realistic scenario, all of these actions will be performed
through an open-source implementation of the ScyNet protocol for
a specific domain. The intent is for the network to be autonomous
and self-sustainable with no required human intervention in the
lifecycle of its domains.

	Abstract
	1 Introduction
	1.1 Related work

	2 Background
	2.1 Blockchain and Ethereum
	2.2 Use of Deep Learning in asset value predictions

	3 Blockchain predictions problem
	4 Manual deep network approach
	5 Neural Architecture Search approach
	5.1 NAS using network morphism and bayesian optimization

	6 Experiments and results
	7 Distributed NAS in a blockchain
	7.1 Main entities and roles
	7.2 Tournament validation
	7.3 Agent utilization

	8 ScyNet implementation
	9 Conclusion
	References
	A Raw blockchain data
	B Generation of data properties
	B.1 Account balance distribution
	B.2 Account number distributions

	C Generation of a dataset
	C.1 Prediction target
	C.2 Normalization
	C.3 Dataset models

	D Generated datasets
	E Blockchain analysis framework
	F Formal ScyNet protocol definition
	F.1 Underlying blockchain
	F.2 Domain configuration
	F.3 Node responsibilities
	F.4 Transaction types

	G Attack resilience
	G.1 Underlying blockchain security
	G.2 Transaction spam
	G.3 Agent signal copying
	G.4 Service failure
	G.5 Agent submission failure
	G.6 Challenger failure

	H Off-chain node functionality

