
Distributed creation of Machine learning agents for Blockchain
analysis

Zvezdin Besarabov
National School of Mathematics and Natural Sciences

Sofia, Bulgaria
zvezdin@comrade.coop

Todor Kolev
Comrade Cooperative

Sofia, Bulgaria
todor@comrade.coop

ABSTRACT

Creating efficient deep neural networks involves repetitive manual

optimization of the topology and the hyperparameters. This human

intervention significantly inhibits the process.

Recent publications propose various Neural Architecture Search

(NAS) algorithms that automate this work. We have applied a

customized NAS algorithm with network morphism and Bayesian

optimization to the problem of cryptocurrency predictions, where

it achieved results on par with our best manually designed models.

This is consistent with the findings of other teams, while several

known experiments suggest that given enough computing power,

NAS algorithms can surpass state-of-the-art neural network models

designed by humans.

In this paper, we propose a blockchain network protocol that

incentivises independent computing nodes to run NAS algorithms

and compete in finding better neural network models for a particu-

lar task. If implemented, such network can be an autonomous and

self-improving source of machine learning models, significantly

boosting and democratizing the access to AI capabilities for many

industries.

KEYWORDS

Neural architecture search, Blockchain, Data mining, Deep learning

1 INTRODUCTION

The availability of computing power has allowed deep learning

to thrive to the point where neural networks are able to reach ev-

ery industry. The advancements in self-driving cars, translation,

decease diagnosis, and computer vision are only a few examples.

However, it is difficult to guess which neural configuration will

perform better on a specific task. Creating efficient neural networks

often involves an endless process of attempting various hyperpa-

rameter and network architecture configurations. Most problems

that require such complex tuning of neural configurations also

demand for long training times. These factors make the process

of neural optimization require both deep expert knowledge and

vast amounts of computing power, limiting the amount of machine

learning problems that can be solved.

Recent advancements in the area explore the concept of Neural

Architecture Search (NAS). These algorithms attempt to automate

the process of deciding which modifications of the current neu-

ral configuration will lead to an increment in performance. This

eliminates the human bottleneck in the process of creating neural

networks.

We would like to create an improved NAS algorithm. Its per-

formance will be measured based on its ability to create efficient

neural configurations for the problem of cryptocurrency predic-

tions. This problem is chosen based on its difficulty and practical

applications. It has been thoroughly explored in our previous re-

search [3], which presents manually configured neural network

models for the problem.

In Section 2, we introduce background information on Blockchain

theory and Deep Learning. Section 3 defines the cryptoasset pre-

dictions problem and our test datasets. In Section 6, we compare

our best manual results to a recently published NAS algorithm.

Based on the experimental conclusions, in Section 7, we propose

the creation of a new NAS algorithm, distributed in a blockchain.

1.1 Related work

A set of recent publications on the topic of Neural Architecture

Search have demonstrated different approaches which successfully

beat state-of-the-art man-made models. Some of them include a

Reinforcement Learning algorithm by Google [2], a Differentiable

Architecture Search approach by Deepmind [7], and a modified

Bayesian optimization and Network morphism-based algorithm

[9]. Out of these, we consider the latter as most interesting, as they

also implemented their approach into an open source library called

AutoKeras.

Multiple blockchain startups have also demonstrated interest

in contributing to the machine learning field. OpenMined [14]

allows researchers to train their models on a private, distributed

dataset, for examplemedical records, and SingularityNet [16] allows

modellers to sell their machine learning solutions as services. While

these networks improve the machine learning work flow, they still

require human intervention for the creation of the models in the

first place.

When it comes to the specific predictive problem, notable work

includes a paper by a Stanford University research group [12] and

two more recent Github projects [5] [15]. All of which focus pri-

marily on Bitcoin price estimations, do not explore the rich publicly

available blockchain data in depth, and do not use or have not dis-

closed sophisticated deep learning techniques for their estimations.

2 BACKGROUND

2.1 Blockchain and Ethereum

Satoshi Nakamoto’s introduction of Bitcoin in November 2008 [13]

has often been hailed as a radical development in money and cur-

rency as it is the first example of a digital asset which simultane-

ously has no backing or “intrinsic value” and no centralized issuer

or controller. Another arguably more important part of the Bitcoin

experiment is the underlying blockchain technology as a tool of

1

ar
X

iv
:1

90
9.

03
84

8v
1

 [
cs

.L
G

]
 6

 S
ep

 2
01

9

distributed consensus. The most important aspect of such tech-

nology is the absence of an intermediary (centralized server, bank,

company, etc.) between the originator and the recipient, as any

changes to the data on this chain are made by consensus among

all members of a decentralized network. Thus, avoiding the need

to trust third parties. The blockchain can be thought of as a dis-

tributed public database with records for each transaction in history.

All cryptoasset operations and activity are contained within the

blockchain transaction data.

The Ethereum project (ETH) is a newer implementation [19],

based on the blockchain technology. In addition to the transac-

tion record keeping functionality, Ethereum provides a mechanism

for executing program logic on each transaction through the con-

cept of smart contacts. This significantly extends the use cases

of blockchain technologies, reaching far beyond simple financial

transactions - secure voting, autonomous organizations, company

management, freedom of speech networks, online games, crowd-

funding, speculation markets.

2.2 Use of Deep Learning in asset value
predictions

Deep Learning [10] allows for the discovery of patterns in a large

dataset. Such a set consists of dataset samples (input-output pairs,

such as summarized blockchain activity and the future price). The

inputs pass through multiple layers (which perform data transfor-

mations with free parameters) and leave as an output. Deciding

on an optimal arrangement, combination, and configuration of lay-

ers is the prime difficulty in creating deep networks. In order to

evaluate a network, the free parameters of its layers have to be set

(trained, learned) on known dataset input-output pairs.

Long Short-Term Memory (LSTM) [8] and Convolutional (CNN)

[11] networks are known types of DL networks, which are well

known for their performance in time series and image analysis

respectively.

3 BLOCKCHAIN PREDICTIONS PROBLEM

The applications of Ethereum [19]make it one of themore noisy and

difficult to predict blockchains. This is why we chose the problem

of predicting Ethereum as the prime target for the evaluation of

our neural networks.

The unprocessed blockchain data of Ethereum contains account

balances and transactions. One of the more interesting ways to

analyze that is to create two-dimensional account distributions,

as seen in Figure 1. These represent two crossed distributions -

one of the cryptocurrency accounts by balance (horizontally), and

one with the time since their last activity (vertically). Analysing a

series of these distributions for different time periods, we can more

effectively capturemajor market movements, as seen in a time-lapse

video of these distributions (https://youtu.be/Dwwnxn1j6AQ).

These observations motivated us to utilize a series of such dis-

tributions as the dataset inputs for our experiments. The expected

output is a Boolean - whether the cryptoasset price will rise or

fall within the next hour. Hence the performance metric of the

algorithm is the percent of cases where it predics correctly. The

baseline of a dataset is the maximum accuracy that can be achieved

Figure 1: We observe the difference in activity of the most

recently active accounts (left) and richest accounts (down).

by predicting a constant value. This type of dataset is the basis of

all experimental results.

The raw blockchain data we collect, the exact definition of the

feature extraction algorithms, as well as the dataset shapingmethod-

ologies are defined in Appendices A, B, and C respectively.

4 MANUAL DEEP NETWORK APPROACH

Our highest results on this problem using manually configured

Neural configurations are achieved in our previous research [3].

The successful configuration is a convolutional architecture, shown

on Figure 2. Using a year-long dataset, the achieved results are a

prediction sign accuracy of 55.12% (50% baseline) when trained on

a year-long dataset.

Figure 2: The manually configured convolutional configura-

tion

5 NEURAL ARCHITECTURE SEARCH
APPROACH

A possible method to find a more accurate neural configuration for

this problem is Neural Architecture Search. The basic work flow of

a NAS algorithm (Figure 3) is to continuously evaluate and modify

a neural configuration to learn which type of modifications are best

for the specific problem.

The bigger challenge in the design of NAS algorithms is usually

to define a modifier function that proposes architecture changes

that effectively increase performance in later stages.

5.1 NAS using network morphism and
bayesian optimization

In June 2018 Jin, Song, and Hu introduced a paper on the topic

of Efficient Neural Architecture Search with Network Morphism

2

https://youtu.be/Dwwnxn1j6AQ

Figure 3: High-level NAS operations

[9]. They define an evolutionary NAS technique that is based on a

modified Bayesian black-box function optimization. The modifier

function in their case is an acquisition function that learns which

configuration areas in the search space are likely to increase per-

formance. After every modification, only the changed layers are

retrained, reducing training overhead.

We experimented with their technical implementation (AutoK-

eras library v0.2.3) and modified it to apply it for the prediction

problem.

6 EXPERIMENTS AND RESULTS

We have conducted multiple experiments with the aforementioned

NAS algorithm in different data setups. The most successful exper-

iment so far includes the dataset, defined in Appendix D. Results

are shown in Table 1.

Manual NAS

Accuracy 55% 78%

Baseline 50% 70%

Difference 5% 8%

Improvement 10% 11.4%

Table 1: Results

It must be noted that the datasets used in the two experiments

are of different length to reflect on the intended use case for both

types of networks. Manual networks are expected to generalize for

prolonged periods of time, which is why they were trained on a

year-long dataset. NAS allows for the flexibility to find an efficient

short-term solution from only the most recent data, which is why

we focused on 7-day datasets. With that in mind, we can observe

that the NAS results are on par with our best manually designed

network.

These results are consistent with the findings of several other

researched NAS approaches, such as Google’s reinforcement learn-

ing [2], Deepmind’s on Differentiable Architecture Search [7], and

Jin, Song, and Hu’s Bayesian optimization with network morphism

[9]. All of these reach results similar or sometimes surpassing the

best neural network models designed by humans.

The unanimous conclusion of all aforementioned researchers is

that their results were achieved by utilizing large amounts of com-

putational power. Further improvement of performance requires

significantly more computational resources, which means that in-

dividual entities can hardly make progress and take full advantage

of the potential NAS algorithms provide.

7 DISTRIBUTED NAS IN A BLOCKCHAIN

One possible way to counter this problem is to create an open

environment where financially incentivised computing nodes can

execute NAS algorithms and compete with each other in finding

optimal neural solutions to a specific problem.

This is the idea that lead us to the creation of a general framework

and blockchain protocol for distributed creation of autonomous

machine learning agents named “ScyNet”.

The following subsections provide a high-level overview of the

protocol in question. The formal definition of the transaction pro-

tocol and node responsibilities is found in Appendix F. Explanation

of the possible attacks a malicious actor can attempt, as well as how

the system will handle these scenarios, is found in Appendix G.

7.1 Main entities and roles

A specific implementation of ScyNet for a chosen problem (for

example, stock market predictions) represents a single blockchain

network and is called a Domain. Every domain defines an unique

utility token that is used to form consensus and incentivise partici-

pants. A node, member of a domain network, is called aHatchery.

Three types of hatcheries exist - harvesters, miners, and external

clients. Harvester hatcheries interface the real world by selling data

related to the domain problem. Miner hatcheries use that data to

execute a NAS that creates machine learning agents as potential

solutions to the problem. The network consensus verifies the per-

formance of the agents and financially awards the best ones. Then,

clients can explore the verified agents and utilize them for a specific

subscription fee determined by the hatchery that produced them.

For example, if we were to apply this protocol for the blockchain

problem, we would create a domain for cryptoasset predictions.

Harvesters can provide arbitrary blockchain or market analysis

data and miners can purchase this data to train predictive agents.

Client hatcheries can rent and use these predictive algorithms to

trade their own portfolio.

7.2 Tournament validation

Tournaments are regularly scheduled “competitions” for the verifi-

cation of new agents. They have a start date and a specific duration,

after which the next tournament starts. Miner hatcheries have

the right to submit one or more of their agents for verification by

paying a submission fee before the start of the next tournament.

How a tournament can cryptographically prove an agent’s per-

formance depends on the type of machine learning problem being

3

solved in the domain. The first type represents real-time predic-

tions, such as stock market trading or weather forecasts. These

predictions are made at the same time in a consistent schedule,

known as real-time ticks. In this scenario, the competing miners

are requested to provide real-time predictions from their agents

for every tick during the tournament. Afterwards, every node in

the network compares these predictions to the actual values to

form consensus on a ranking of the participating agents and their

respective performance.

The other type of problems are dataset input-output problems,

such as self-driving algorithms or speech recognition. In this case,

the network consensus randomly selects multiple nodes that are

labeled as challengers. Every such node is responsible to provide

a dataset with which to challenge the competing agents to resolve it.

Depending on the problem, this can be either algorithmically gen-

erated, or retrieved from a reliable source. The miners evaluate the

dataset and publish the outputs of their agents. After tournament

closure, the network compares the agent outputs to the expected

ones and forms consensus on an agent ranking.

The submission fees collected before a tournament comprise

the tournament award, which is used to award the top performing

agents and the selected challengers, if applicable.

At no single point do the miners reveal the mechanisms behind

their agents, allowing for a significant flexibility in how these agents

are created.

7.3 Agent utilization

Miners with verified agents have the right to set a price and allow

others to “rent” their agents. For real-time problems, this means

paying a subscription to receive a specific agent’s real-time pre-

dictions. In dataset problems, the clients privately send a specific

input data that they want the agent to resolve and then receive its

output, paying a fee for every input they submit. A miner that does

not want to sustain an agent can also directly sell the model behind

it. The fees are received directly by the respective seller miners as

an additional reward for having created useful agents.

Other than being sold to external clients, agent outputs (signals)

can also be bought by miners that include them in the input of their

own agents. This act of chaining agents also means that there can

be “aggregator” agents that receive signals from many other agents

and produce a more informed signal on their own.

8 SCYNET IMPLEMENTATION

Our plans are to use the presented blockchain protocol to implement

a public blockchain network, which we will also call “ScyNet”.

Even with a small number of initially participating nodes, ScyNet

can be a meaningful source of Machine Learning models that is

entirely automated and autonomous. The only resource that this

network requires to produce continuously improving models is

computing power.

Through the utility token economy and decentralized tourna-

ments, the participating nodes in ScyNet earn, stake, and trade

with native blockchain tokens, used also for the network’s Proof-

of-Stake consensus. As the economic utility of training Machine

Learning agents is higher than that of mining hashes, it is rea-

sonable to suggest that the market capitalization of the suggested

network’s utility token can be at least similar to the ones of the

currently widespread Proof-of-Work networks.

If ScyNet is made operational, it can democratize the access

to AI for many industries. Still, we see the most exciting early

applications of the network in the algorithmic trading of crypto-

assets. Thus, the network will have its economic incentives entirely

within the blockchain domain.

9 CONCLUSION

Our initial focus on the problem of blockchain analysis led to the

manual creation of an effective neural network. We were surprised

to see how applying the latest state of NAS research for this prob-

lem managed to create a neural network, reaching the same perfor-

mance level, all without human intervention.

This experiment also demonstrated that the main constraint to

what a NAS algorithm can achieve is the amount of computing

power utilized. That motivated us to design a Blockchain protocol

that incentivises independent computing nodes to execute NAS

algorithms and compete in creating continuously improving solu-

tions for a particular task. The nodes of the network can collaborate

through an open market mechanism which allows for the stacking

of different models that can provide even more informed predic-

tions.

Our future work will be towards providing a reference imple-

mentation of the presented blockchain protocol and establishing

an operational network of computing nodes.

REFERENCES
[1] Baqer, K., Huang, D. Y., McCoy, D. and Weaver, N. [2015], ‘Stressing out: Bitcoin

“stress testing”’, http://damonmccoy.com/papers/bitcoin16-final22.pdf.
[2] Barret Zoph, Q. V. L. [2017], Neural architecture search with reinforcement

learning.
[3] Besarabov, Z. and Kolev, T. [2018], ‘Predicting digital asset market based on

blockchain activity data’, ArXiv e-prints .
[4] Buterin, V. [2015], ‘Understanding casper : Proof of stake consensus algorithms’,

https://blog.ethereum.org/2015/12/28/understanding-serenity-part-2-casper/.
[5] Bynum, C. [2015], ‘Bitpredict’, https://github.com/cbyn/bitpredict.
[6] Etherscan [2018], ‘Ethereum chaindata size growth (fast sync)’, https://etherscan.

io/chart2/chaindatasizefast.
[7] Hanxiao Liu, Karen Simonyan, Y. Y. [2018], ‘Darts: Differentiable architecture

search’.
[8] Hochreiter, S. and Schmidhuber, J. [1997], ‘Long short-term memory’, Neural

Comput. 9(8), 1735–1780.
URL: http://dx.doi.org/10.1162/neco.1997.9.8.1735

[9] Jin, H., Song, Q. and Hu, X. [2018], ‘Efficient neural architecture search with
network morphism’.

[10] LeCun, Y., Bengio, Y. and Hinton, G. [2015], ‘Deep learning’, Nature 521, 436.
URL: http://dx.doi.org/10.1038/nature14539

[11] Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. [1998], ‘Gradient-based learning
applied to document recognition’, Proceedings of the IEEE 86(11), 2278–2324.

[12] Madan, I. [2014], Automated bitcoin trading via machine learning algorithms.
[13] Nakamoto, S. [2009], ‘Bitcoin: A peer-to-peer electronic cash system’, https:

//bitcoin.org/bitcoin.pdf.
[14] OpenMined [2019], ‘An open-source community focused on researching, devel-

oping, and elevating tools for secure, privacy-preserving, value-aligned artificial
intelligence.’, https://www.openmined.org/.

[15] Remy, P. [2017], ‘Deep learning bitcoin’, https://github.com/philipperemy/
deep-learning-bitcoin.

[16] SingularityNET [2017], ‘A decentralized, open market and inter-network for ais’,
https://public.singularitynet.io/whitepaper.pdf.

[17] Sunny King, S. N. [2012], ‘Ppcoin: Peer-to-peer crypto-currency with proof-of-
stake’, https://peercoin.net/whitepapers/peercoin-paper.pdf.

[18] Tendermint [2019], ‘Byzantine-fault tolerant state machine replication’, https:
//tendermint.com/.

[19] Wood, G. [2018], ‘Ethereum: a secure decentralized generalised transaction
ledger’, https://ethereum.github.io/yellowpaper/paper.pdf.

4

http://damonmccoy.com/papers/bitcoin16-final22.pdf
https://blog.ethereum.org/2015/12/28/understanding-serenity-part-2-casper/
https://github.com/cbyn/bitpredict
https://etherscan.io/chart2/chaindatasizefast
https://etherscan.io/chart2/chaindatasizefast
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.openmined.org/
https://github.com/philipperemy/deep-learning-bitcoin
https://github.com/philipperemy/deep-learning-bitcoin
https://public.singularitynet.io/whitepaper.pdf
https://peercoin.net/whitepapers/peercoin-paper.pdf
https://tendermint.com/
https://tendermint.com/
https://ethereum.github.io/yellowpaper/paper.pdf

A RAW BLOCKCHAIN DATA

The first kind of data gathered is historical market tick data, which

is aggregated from multiple exchanges to achieve a less biased view

of the financial state. The frequency (size of each market tick) is one

hour. Every tick consists of the open, close , low , and hiдh prices, as

well as the trade volume to and from the currency for that period.

The second kind of data is from the Ethereum blockchain. It

grows every day [6] and includes hundreds of gigabytes worth of

transactions, cryptocontract executions, and blockchain events for

every moment its existence. For each block in the chain, the follow-

ing data points are extracted: creation timestamp, number (chain

index), miner (block creator), list of confirmed transactions, size in

bytes, creation difficulty, and computational resources used (Gas

limit and Gas used). The following is stored for each transaction

in a block: address of the initiator and receiver, transferred value,

used resource units (Gas), and amount paid per resource unit (Gas

price). The same kind of information is also collected for internal

contract activity by calculating transaction traces.

The total size of the gathered raw blockchain features is around

500GB, containing 5, 300, 000 blocks with a total of 194, 000, 000

transactions and close to a billion traces. It took 30 consecutive

days to download and another 14 to process, filter, format, and save

the data to a database.

Both themarket and blockchain data are collected for the interval

from 8-08-2015 to present.

B GENERATION OF DATA PROPERTIES

In order to create a blockchain-based dataset, we first need to extract

more valuable information from the raw blockchain data by defining

feature extraction algorithms. A feature (also called property) is

calculated once for each market tick in the historical data in order

to form a time series.

More specifically, we are investigating methods to track the activ-

ity of cryptocurrency accounts in higher detail. This is achieved by

creating account distributions - 2D matrices that visualize account

activity based on multiple account features. These distributions

contain spatial value, which Convolutional networks can take ad-

vantage of.

Let us introduce some common definitions: scl as an array of

scale functions, f eat as an array of functions that return an account

feature, andmx as an array of constants.

Possible values for scli include log2 and log1.2. Possible account

features (f eati) are defined in Table 2.

B.1 Account balance distribution

This distribution visualizes summarized recent account activity

in terms of the exchanged volume and amount of transactions,

distributed based on balance groups.

Let us define scl0 = log2; mx0 = 1026; f eat0 = volumeIn; f eat1 =

volumeOut ; f eat2 = transactionN ; дroupN = ⌊ scl0(mx0)⌋; f eatN =

3, S as the accounts that have participated in a transaction through-

out the current market tick, and distribution as a matrix of shape

(f eatN ,дroupN).

Feature Description

balance Account balance, measured inwei (1018 wei =

1 ETH).

lastSeen Amount of seconds since the account’s last par-

ticipation in a transaction.

volumeIn Amount of received value in the last tick, in

wei .

volumeOut Amount of sent value in the last tick, inwei .

transactionN Amount of transactions where the account is

either a receiver or a sender.

ERC20 Amount of ERC20 token operations in the last

tick (Ethereum contracts only)

Table 2: The possible account feature functions.

For acc ∈ S :

дr = min(⌊scl0(balance(acc))⌋,дroupN − 1)

For x ∈ [0, f eatN):

distributionx,дr + = f eatx (acc)

distribution = scl0(distribution)

The final operation is to scale the large values of volumeIn and

volumeOut.

Figure 4 contains an example of 2 such distributions.

Figure 4: Examples with scl0 = log1.2 (up) and scl0 = log2
(down). We observe how the summarized account trade ac-

tivity changes in the different balance groups.

B.2 Account number distributions

These multivariate distributions represent how the accounts are

clustered based on 2 of their account features.

The process of creating an account number distribution is de-

scribed as follows:

Repeat for x = 1 and x = 2:

дroupNx = ⌊sclx (mxx)⌋

For acc ∈ S , where S is a chosen subset of (or all) accounts, do:

Repeat for x = 1 and x = 2:

дroupx = min(⌊sclx (f eatx (acc))⌋,дroupNx − 1)

distribution[дroup1, дroup2] + = 1

Finally, for every value, do:

5

distribution = log2(distribution)

The final log2 scaling is to mitigate the uneven distribution of

accounts. Some configurations of this type of distributions are

presented in Table 3.

N S f eat1 f eat2 scl1 scl2 mx1 mx2
1 all balance lastSeen log1.2(⌊x/10

17⌋) log1.2 107 20736e3

2 contracts balance lastSeen log1.2(⌊x/10
17⌋) log1.2 107 20736e3

3 contracts volumeIn ERC20 log2(⌊x/10
17⌋) log2 107 262144

Table 3: The configurations for account number distribu-

tions. The balances and transfers, measured in wei, are

scaled to larger units (1017 wei = 0.1 eth) to reduce noise.

Consequently, we refer to the distribution configurations as

follows: balanceLastSeenDistribution (N=1), contractBalanceLast-

SeenDistribution (N=2), and contractVolumeInERC20Distribution

(N=3). Example distributions are visualized in Figure 5.

C GENERATION OF A DATASET

A dataset is a set of samples, containing inputs (normalized prop-

erty data) and expected outputs (prediction target). The concepts

and methodologies behind dataset generation are defined in the

following subsections.

C.1 Prediction target

The prediction target is the future value a chosen target property.

Predictions are for the duration of one market tick. Examples of a

prediction target include relative price fluctuations, amount of new

accounts, trade volume, transaction count, and network stagnation

(which has been a considerable issue in the past [1]).

Our experiments are be mainly focused on predicting price move-

ments.

C.2 Normalization

Let us define the following normalization algorithms:

basici =
xi −min(x)

(max(x) −min(x))

This basic min-max scale is used to map independent sequences

with the same sign to the interval ∈ [0; 1].

around_zeroi =
xi +max(|max(x)|, |min(x)|)

2 ∗max(|max(x)|, |min(x)|)

Similar to basic , but maps positive and negative inputs to (0.5; 1]

and [0; 0.5) respectively. This scale is used with sequences of vary-

ing sign.

imaдei = (xi −
1

n

n∑

t=1

xt) ∗
1

std(x)

An an algorithm which produces unbounded time series of zero

mean and equal variance. It is used with image-line sequences.

Every property in a dataset is a different time series and is normal-

ized separately with a chosen algorithm. A method to automatically

determine the algorithm for a given property is called prop, which

Figure 5: balanceLastSeenDistribution (up): we observe

the difference in activity of the most active accounts

(left) and richest accounts (down). The empty lines are

seen because ⌊log1.2(x)⌋ < {1, 2, 4, 5} for all x . User

behavior and major market movements are more effec-

tively seen in a time-lapse video of the distribution values

(https://youtu.be/Dwwnxn1j6AQ).

contractVolumeInERC20Distribution (down): we observe

the correlation of a crypto contract being used (X) and the

amount of funds received from it (Y).

uses basic scale if the property values are absolute and around_zero

scale otherwise.

Most of the algorithms scale on the basis ofmin andmax bounds,

hence future values may not fit that initial scale. The problem is

mitigated if the normalized values are relative, which has also

resulted in lower overfit and higher prediction accuracy in our

experiments.

C.3 Dataset models

The dataset samples (input-output pairs) are created using a sliding

window with a size ofwn and step increments of 1 over a chosen

set of normalized property values. Let us define a property’s values

as propy , where y < propN , a specific value in a property time

series as propy,x , and propt as the prediction target.

step = 0

6

https://youtu.be/Dwwnxn1j6AQ

Figure 6: Visualized sample of the stacked layers model,

where wn = 3 and the chosen properties consist of balance-

LastSeenDistribution.

For x ∈ [0,wn − 1], do:

For y ∈ [0,propN − 1], do:

winx,y = propy,x+step
tar = propt,wn+step

Where win is the window (unstructured dataset input), tar is

the expected output, and step is incremented for each window.

In order to combine multiple normalized properties in a single

dataset, we need the following model that defines how their values

are arranged in N-dimensional space.

C.3.1 Stacked layers model. A given set of property values (a

column inwin) has shape (v1,v2,wn), where v1 = 1 and v2 = 1 for

all properties but the distributions (discussed in Sections B.1 and

B.2). The stacked layers model is a 3D structure that matches input

shape for the Convolutional Neural Network and allows modeling

of 3D shaped property windows, preserving their spatial value.

Themodel defines a 3Dmatrixmat of shape (values1,values2,wn).

A dataset samplemat is created as follows. For every set of win-

dowed property values vals:

mats1+(0 to v1),s2+(0 to v2),0 to wn = vals0 to v1,0 to v2,0 to wn

Where s1 and s2 are set to the smallest integers where no values

of other previously assigned properties are overridden. A visualized

sample produced this model is seen in Figure 6.

D GENERATED DATASETS

Our NAS experiment includes one variant of a dataset configuration.

It comprises of the propertybalanceLastSeenDistribution using the

stacked model with 24window_size and imaдe normalization. The

dataset spans 10 days after 2017-09-07, where the train dataset is

the first 7 days and the network performance is evaluated on the

last 3. The expected neural network output is a classification on

whether hiдhPrice increases or falls in the next tick.

In our prevoius experiments [3], datasets covering huge time

intervals have consistently demonstrated lower performance on re-

cent data. Cryptoassets are very volatile and we are only interested

in analyzing the latest market trends, contained in the activity of

the last couple of days. This short-term approach would only be

practical with automatically generated neural networks, as a new

configuration needs to be created for every new market trend.

E BLOCKCHAIN ANALYSIS FRAMEWORK

The technical implementation for the blockchain problem, including

data processing, dataset generation, and manual neural network

definitions, is developed into an open MIT-licensed Blockchain

analysis framework. The framework allows for the prediction of

a chosen cryptocurrency on the basis of user-defined property

extraction and neural algorithms. The GitHub repository of the

project can be found at: https://github.com/Zvezdin/blockchain-

predictor

F FORMAL SCYNET PROTOCOL DEFINITION

All of the roles and functions of the proposed blockchain network

can be more formally represented through the ScyNet blockchain

protocol. It represents a set of transactions and a consensus mecha-

nism that build an independent blockchain for the creation, verifi-

cation, and utilization of machine learning agents.

F.1 Underlying blockchain

On a lower level, a ScyNet domain builds an independent blockchain

network and a blockchain structure. The network behaves similarly

to Bitcoin [13], where any external node can connect with other

peers, synchronize the blockchain, interact with the network by

signing transactions, as well as participate in the consensus by

verifying transactions and blocks.

F.1.1 Domain token. Every domain network creates a non-mintable

token of a fixed supply. This token is used in all network payments

to incentivise the consensus and commitments of the three types

of hatcheries - harvesters, miners, and clients.

F.1.2 Consensus. Bitcoin’s consensus relies on the GPU-heavy

Proof-of-Work mechanism, known as “mining”. ScyNet domains

use a more efficient consensus mechanism in order to utilize GPU

power for useful work. The consensus is a variant of Proof-of-

Stake [4] called “Coin Age based selection”, as introduced in the

PeerCoin cryptocurrency [17]. The consensus power (probability

for a specific node to win a block) is proportional to the number

of cryptocurrency tokens the node has “staked”, multiplied by the

amount of days since it staked them. The timer is reset every time

a node changes its stake or wins a block. This mechanism makes

block creation more evenly distributed among the competing nodes,

because the timing mechanism allows nodes with smaller amounts

of stake to have a significant chance at winning a block overtime.

F.1.3 State replication. A ScyNet domain network is built with

the Tendermint framework [18]. It allows for the secure and consis-

tent replication of a state machine (application) over many comput-

ing nodes. This means that once we define the types of transactions

and the respective logic for their handling, Tendermint can consis-

tently propagate these transactions through our peer network so

that every node is on the same application state after every trans-

action. The framework is also Byzantine fault tolerant as it can

tolerate the arbitrary failure of up to 1
3 of the participating peers.

A network based on Tendermint works as follows. First, nodes

submit transactions that reach every other node in the P2P net-

work and enter the nodes’mempool . Upon a configurable event, a

distributed pseudo-random function is executed that selects one

7

https://github.com/Zvezdin/blockchain-predictor
https://github.com/Zvezdin/blockchain-predictor
https://github.com/Zvezdin/blockchain-predictor

node on the base of its consensus power. This node selects trans-

actions from themempool , creates a block, and submits it to the

network. The block has to be signed by nodes with at least 2
3 of

the network’s total consensus power in order for it to be accepted

on the blockchain. If this step fails within a timeout, a new block

creator is selected.

F.2 Domain configuration

The definition of a domain network includes setting a few specific

parameters. This defines the tournament schedule and validation

parameters, which depend on the specificmachine learning problem

being solved:

• tournamentStartFrequency (Integer, milliseconds) - A tour-

nament will start every x milliseconds, measured from

UNIX Epoch. The tournament ends right before the start

of the next one;

• proposerDeadline (Integer, milliseconds) - Period after the

tournament where a selected proposer node must submit

a tournament ranking;

• timeTolerance (Integer, milliseconds) - Latency tolerance

for timed transactions;

• problemType (“real-time” or “dataset”) - Type of machine

learning problem;

• realTimeFrequency (Integer, milliseconds) - For real-time

problems, a real-time tick is defined as every xmilliseconds,

measured from UNIX Epoch;

• datasetSubmissionDeadline (Integer, milliseconds) -Deadline

for challengers to submit dataset inputs after tournament

start;

• minAgentChallengers (Integer) -Minimumnumber of nodes

that have to independently challenge a submitted agent;

• minAgentChallengerVotingPower (Percentage) - Minimum

share of the network voting power that has to challenge a

submitted agent;

• agentSubmissionFee (Domain tokens) - Fee for a miner to

submit an agent for a tournament;

• dataPublishFee (Domain tokens) - Fee for a harvester to

publish a data offering;

• pricePublishFee (Domain tokens) - Fee for a miner to ad-

vertise his agent on the chain;

• rentFee (Domain tokens) - Fee withdrawn when a client

rents an agent.

Outside the blockchain consensus, every domain needs a techni-

cal implementation of the blockchain node that defines all off-chain

specifics, such as data formats, which error function is used in

agent evaluation, or what external data do the nodes need to evalu-

ate agents. Other responsibilities of the node implementation are

discussed in Section H.

F.3 Node responsibilities

The high-level overview (Section 7) presented the main roles and

responsibilities and this section defines the specific protocol that

every network node must follow to achieve that. References will

be made to both the domain configuration (Section F.2) and the

different network transactions (Section F.4).

F.3.1 Harvester actions. In order for a hatchery to provide a

data stream (real-time or of specific quantity) and advertise it on

the blockchain, it must:

(1) Submit publish_data_price transaction (Section F.4.9), pay-

ing the dataPublishFee;

(2) Listen for rent transactions F.4.10 that are directed to the

harvester;

(3) Communicate with the sender off-chain and privately give

access to the requested quantity or duration of data.

F.3.2 Miner actions. In order to verify and sell an agent on the

network, a miner should:

(1) Send submit_agent transaction (F.4.1), paying the

aдentPublishFee;

(2) If domain is real-time:

(a) Wait for the first real-time tick after tournament start;

(b) Generate an AES-256 key, generate an agent signal,

encrypt the signal, and send submit_signal transaction

(F.4.3);

(c) At the next real-time tick, reveal the decryption key

with publish_signal_decryption_key transaction (F.4.5);

(d) Repeat from b for every real-time tick until tourna-

ment end.

(3) If domain is dataset:

(a) Wait for consensus to select the tournament chal-

lengers and then listen for publish_dataset transac-

tions (F.4.2) from the challengers until the

datasetSubmissionDeadline;

(b) Download the datasets, generate all agent signals, gen-

erate an AES-256 key, encrypt the signals, and send

submit_signal transaction (F.4.3);

(c) Wait for tournament end and reveal the decryption

key with publish_signal_decryption_key transaction

(F.4.5).

(4) If the miner decides, it may submit publish_agent_price

transaction F.4.8 to advertise his agent as a service;

(5) Listen for rent transactions F.4.10 that are directed to the

miner;

(6) Communicate with the sender off-chain and privately give

access to the requested agent use.

Failing to submit all required signals by the domain type will

render the miner as disqualified from the tournament.

F.3.3 Challenger actions (dataset domains). The discussed con-

sensus algorithm in Section (F.1.2) presented a method to pseudo-

randomly select one node from the network for block creation. The

same algorithm is also used to select tournament challengers with

the following additional rules:

(1) The selection process starts at tournament start;

(2) A miner, participating in the tournament, cannot be se-

lected;

(3) There must be at leastminAдentChallenдers challengers

selected;

(4) The total consensus power of selected challengers must be

at leastminAдentChallenдerVotinдPower ;

(5) There cannot be a challenger that comprises more than

10% of the total challenger consensus power;

8

(6) Run the selection algorithm until these conditions are met.

Once selected, every challenger must:

(1) Run a domain-specific algorithm to generate a validation

dataset.;

(2) Generate an AES-256 key, encrypt the dataset outputs, and

submit the dataset through the publish_dataset transac-

tion(F.4.2) by the datasetSubmissionDeadline;

(3) Wait for tournament end and submit dataset outputs de-

cryption key via publish_dataset_decryption_key (F.4.4).

Failing to follow these rules by either not submitting a required

transaction by the deadline, or submitting an invalid one, will result

in the specific challenger being marked as disqualified, losing this

role for the present tournament.

F.3.4 Common actions for every node.

(1) If domain is real-time:

(a) Listen for submit_signal transactions (F.4.3) from the

miners;

(b) Listen for publish_signal_decryption_key transactions

(F.4.5);

(c) Wait for tournament end and decrypt all received

signals;

(d) Make a local ranking of agents based on their predic-

tion accuracy.

(2) If domain is dataset:

(a) Listen for publish_dataset transactions (F.4.2) from

the challengers;

(b) Listen for submit_signal transactions (F.4.3) from the

miners;

(c) Listen for publish_dataset_decryption_key (F.4.4) from

the other challengers;

(d) Listen for publish_signal_decryption_key transactions

(F.4.5) from the miners;

(e) Decrypt all received signals and make a local ranking

of the agents based on their average score among all

challenger datasets;

(f) If any challenger misbehaves, mark him internally as

disqualified.

(3) If any miner misbehaves, mark him as disqualified as well.

A misbehaving node is one that did not follow the protocol of its

role and either did not submit a required transaction, or submitted

an invalid one. If a node marks another as disqualified, this is only

internally known by the node itself.

The first block creator that is selected after a theproposerDeadline

must include its local tournament ranking in the block by including

the publish_tournament_ranking (F.4.6) transaction. This transac-

tion will grant the tournament reward according to the rules in

Section F.3.5. If another node receives a block after the specific

deadline, the tournament results have not already been written

to the blockchain, and a valid publish_tournament_ranking (F.4.6)

transaction is not present, the block must be rejected. When a block

is rejected, the consensus selects a new block creator who will, in

this case, also be obliged to submit the ranking.

If the block creator has internally disqualified challengers with

≥ 50% of the consensus power of all challengers, the tournament

is considered a failure. In this case, the tournament_failure (F.4.7)

transaction has to be submitted instead, refunding all received fees

that comprise the failed tournament reward.

F.3.5 Tournament reward. All aдentSubmissionFee and

dataPublishFee , and rentFee received before the start of a tourna-

ment comprise the tournament reward. When a valid

publish_tournament_ranking (F.4.6) transaction is received, the

balance of the reward is granted by the following principles:

• If the domain is real-time, award the non-disqualified min-

ers behind the top 3 performing agents in ratio 3:2:1;

• If the domain is dataset, the first 1
3 of the reward is assigned

to the non-disqualified challengers in ratio of their con-

sensus power. The rest is assigned to the non-disqualified

miners behind the top 3 performing agents in ratio 3:2:1;

• If ≤ 3 and ≥ 1 agents are from non-disqualified miners,

the reward is split on 3:2 or 1 ratio;

• If 0 agents have survived, the reward is transferred to the

fund of the next tournament.

F.4 Transaction types

All blockchain communication in a domain is executed through

transactions. Every hatchery holds an identity (account) on the

network and should sign any outcoming transactions with it. An

incorrectly signed transaction is invalid. Invalid transactions will

be rejected by any peers and will not be propagated through the

network or included in a block.

In the following subsections we describe in detail every type of

transaction with its arguments, effect, and validity.

F.4.1 submit_agent(UU ID). Sent by a miner hatchery to notify

that it has an agent that it wants to verify in the next tournament.

Transaction arguments include an UU ID by which this agent will

be identified in future communication. Sending this transaction

will automatically withdraw aдentSubmissionFee amount of tokens

from the miner’s balance.

The transaction is invalid if the proposedUU ID is already taken

by another agent, or if the miner does not have enough tokens to

pay the fee.

F.4.2 publish_dataset(inputsURL, inputsHash,

encryptedSiдnalsURL, siдnalsHash). Only exists in dataset domains.

It is used by tournament challengers to publish the inputs of their

personal dataset (accessible through inputsURL) so that competing

miners can prove their agents’ performance on it. The challenger

generates a random AES-256 key and encrypts and uploads the cor-

rect dataset outputs (through encryptedSiдnalsURL). Hashes of the

inputs and decrypted outputs are provided for future verification.

The transaction is invalid if it is not signed by a selected tour-

nament challenger, if the same challenger already submitted a

transaction of this type during the same tournament, or if the

datasetSubmissionDeadline of the current tournament has passed.

F.4.3 submit_signal(aдentUU ID, encryptedSiдnal). Sent by a

miner hatchery to submit an AES-256 encryptedSiдnal from a spe-

cific agent (aдentUU ID). Every signal must be encrypted with a

different, unique, AES key.

The transaction is valid if aдentUU ID exists and is claimed by

the signing miner through a previous submit_agent.

9

Additionally, if the problem is real-time, the transaction is valid

only if received within a timeTolerance of the specific real-time

tick. It is invalid if the same transaction type has already been sent

by the same miner and with the same aдentUU ID for the same tick.

If valid signal transactions for all ticks throughout a tournament

are not received, the miner is disqualified.

If the problem is dataset , the transaction is valid only if received

during an active tournament. It is invalid if the same transaction

type has already been sent for the same aдentUU ID. If not received,

the miner is disqualified from this tournament.

F.4.4 publish_dataset_decryption_key(key). Only exists in dataset

domains. Every tournament challenger has to send this after the

end of a tournament and reveal the encryption key that was used

to encrypt the correct dataset outputs in publish_dataset.

The transaction is invalid if not signed by a non-disqualified

tournament challenger, not received within a timeTolerance of the

tournament end, or the same transaction type has already been

sent by the same challenger after the end of the same tournament.

If a tournament challenger does not submit this valid transaction,

he is disqualified.

F.4.5 publish_signal_decryption_key(aдentUU ID, key). Sent by

a miner a specific amount of time after signing submit_signal to

reveal the AES-256 key by which the original signal was encrypted.

The transaction is valid if aдentUU ID is a previously registered

agent by the signing non-disqualified miner and key has not been

previously used in this tournament.

If the problem is real-time, the transaction is only valid if received

within a timeTolerance of a specific real-time tick and key success-

fully decrypts the signal received in submit_signal transaction for

aдentUU ID from the previous real-time tick.

If the problem is dataset, the transaction is only valid if received

within a timeTolerance of the tournament end and key decrypts

the previously submitted signal.

If the signal is for an agent competing in an active tournament

and a valid key is not received by the end deadline, the miner who

owns the agent is disqualified.

F.4.6 publish_tournament_ranking(rankinд). Writes the results

of a successful tournament on the blockchain - a ranking of the com-

peting non-disqualified agents and their respective performance

scores. Upon receiving a valid transaction, the node must update

its state to grant the tournament award in accordance to Section

F.3.5.

Transaction is only valid if:

• The signer is the block creator;

• The transaction is received after a tournament end (and

preferably but not enforceably before theproposerDeadline);

• The tournament is successful;

• The ranking exactly matches the node’s internal ranking;

• The ranking for this tournament has not been successfully

submitted already.

F.4.7 tournament_failure. Sent to notify for a failed tournament.

Upon receiving a valid transaction, the node must update its state

to refund all aдentSubmissionFee or dataPublishFee that were re-

ceived for the failed tournament’s reward.

Transaction is only valid if:

• The signer is the block creator;

• The transaction is received after a tournament end (and

preferably but not enforceably before theproposerDeadline);

• This transaction has not already been submitted for the

same tournament.

F.4.8 publish_agent_price(aдentUU ID, scheme , price). Aminer

can allow his agent to be rented, or subscribed to, by other hatcheries.

There are two types of payment schemes - paying the price for ev-

ery time you use an agent, subscribing to the agent and being able

to use it for a specific period, or directly buying the algorithm. This

transaction withdraws pricePublishFee from the miner’s account.

The transaction is valid if the signer has previously successfully

had aдentUU ID validated in a tournament, or if the signer does

not have balance for the fee.

F.4.9 publish_data_price(dataUU ID,dataParams , scheme ,price).

A harvester can freely publicize what data it intends to sell to min-

ers for the training of their agents. Details, including the shape,

frequency, and further description of the data features are included

in dataParams , which is a domain-specific data structure. The

scheme and price parameters have the same functionality as in

publish_agent_price. Submitting this transaction will withdraw

dataPublishFee domain tokens from the harvester’s account.

The transaction is valid if the signer has enough balance to pay

the fee and dataUU ID has not been previously assigned to an agent

or data provider.

F.4.10 rent(UU ID, quantity). Any hatchery can rent a pub-

lished agent or data from a harvester. Signing this transaction

will withdraw quantity ∗ price domain tokens from the sender,

where price is the specific cost of the agent or data to whichUU ID

refers. The tokens are sent to the balance of the hatchery that

created the agent or data. An additional rentFee is withdrawn to

restrict potential transaction spam, which is sent to the next tour-

nament reward. Afterwards, the buying hatchery has to establish

off-chain contact with the receiving hatchery and agree upon a

delivery method, which is domain-specific.

The transaction is valid if quantity ≥ 1, the signer has enough

balance to pay for the fees, UU ID exists, and a price for it has

already been published through publish_agent_price or

publish_data_price.

IfUU ID refers to an agent whose payment scheme is to sell the

algorithm directly, the transaction is invalid if quantity , 1.

G ATTACK RESILIENCE

In this section, we describe how the specifics of the ScyNet trans-

action protocol build resilience against the arbitrary failure of any

network node and role.

G.1 Underlying blockchain security

The Tendermint framework allows for the synchronous processing

of transactions that propagate through the network in a determin-

istic manner. There is no disparity in the system, meaning that

replay attacks are not possible. Because of the voting mechanism

for consensus, if one party obtains ≥ 1
3 of the network’s consensus

10

power, it can stop block verification. The system can be arbitrarily

modified with ≥ 2
3 of the consensus power.

Additionally, the transaction signing makes impersonation is

not possible without access to a node’s private key.

G.2 Transaction spam

As discussed in the description of the transactions, every transac-

tion type that does not require a fee has constraints on its usage

for a time period. Sending a transaction outside of these limits will

invalidate it and it will not be propagated through the network.

Transactions with fees have monetary incentives against this behav-

ior. This ensures protection against Denial-of-Service transaction

attacks.

G.3 Agent signal copying

A miner may be tempted to copy a rival’s agent signals during

a tournament and submit them as his own. However, all agent

signals are submitted encrypted. The decryption key is revealed

after the deadline for submission of a specific signal, protecting

against copying.

A miner may instead copy all submitted ciphertexts of a rival

and then copy the decryption key. However, when submitting a

signal, the miner is required to encrypt both the signal and his

public key, signing the package with his private key. This means

that while cyphertext copying is possible, after the decryption key

is revealed, so will be the true author.

G.4 Service failure

If a client has paid a miner or a harvester to utilize its agent or data,

the providing node can theoretically deny access to the service, as

it is not part of the blockchain consensus. However, as nodes on

the network are usually anonymous, the provider has no financial

incentive to behave that way.

G.5 Agent submission failure

A miner may submit an agent for participation in a tournament

and then fail to send a required timed agent signal or decryption

key. In this case, the miner will be disqualified. If all miners in

a tournament are disqualified, the tournament is still considered

successful.

G.6 Challenger failure

In dataset domains, failing to send a dataset or an output decryption

key by the deadlines will disqualify that challenger. This includes

sending too large, wrongfully formatted, wrongfully encrypted,

wrongfully hashed, or otherwise corrupt dataset.

Submitting a valid dataset with incorrect outputs is possible,

as there is no way to differentiate between an inaccurate agent

and bad testing data. The challenger can also secretly provide the

unencrypted correct outputs to a competing miner, giving him

an unfair advantage. Because the performance of an agent is his

average performance over all challenger datasets, the intent is

to minimize the impact of a malicious challenger by requiring a

specific quantity of challengers as per Section F.3.3. Nevertheless,

a theoretical large amount of malicious challengers can adversely

impact the ranking reliability.

H OFF-CHAIN NODE FUNCTIONALITY

Other than obeying the transaction protocol and defining the do-

main parameters, all nodes in a domain network must agree on

the specifics of the problem in question. This includes defining

the data format of the signals, harvester streams, and datasets, the

method of evaluation of agent performance and any required ex-

ternal data, and the method of dataset generation for challengers

(where applicable). Additionally, the miner software is responsible

for executing and maintaining a NAS algorithm, as well as auto-

matically selecting which neural networks produced by the NAS to

submit for network verification as agents.

In a realistic scenario, all of these actions will be performed

through an open-source implementation of the ScyNet protocol for

a specific domain. The intent is for the network to be autonomous

and self-sustainable with no required human intervention in the

lifecycle of its domains.

11

	Abstract
	1 Introduction
	1.1 Related work

	2 Background
	2.1 Blockchain and Ethereum
	2.2 Use of Deep Learning in asset value predictions

	3 Blockchain predictions problem
	4 Manual deep network approach
	5 Neural Architecture Search approach
	5.1 NAS using network morphism and bayesian optimization

	6 Experiments and results
	7 Distributed NAS in a blockchain
	7.1 Main entities and roles
	7.2 Tournament validation
	7.3 Agent utilization

	8 ScyNet implementation
	9 Conclusion
	References
	A Raw blockchain data
	B Generation of data properties
	B.1 Account balance distribution
	B.2 Account number distributions

	C Generation of a dataset
	C.1 Prediction target
	C.2 Normalization
	C.3 Dataset models

	D Generated datasets
	E Blockchain analysis framework
	F Formal ScyNet protocol definition
	F.1 Underlying blockchain
	F.2 Domain configuration
	F.3 Node responsibilities
	F.4 Transaction types

	G Attack resilience
	G.1 Underlying blockchain security
	G.2 Transaction spam
	G.3 Agent signal copying
	G.4 Service failure
	G.5 Agent submission failure
	G.6 Challenger failure

	H Off-chain node functionality

